
A New Version of Grain-128 with Authentication

Martin Ågren1, Martin Hell1, Thomas Johansson1, and Willi Meier2

1 Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin.agren,martin,thomas}@eit.lth.se
2 FHNW, CH-5210 Windisch, Switzerland

willi.meier@fhnw.ch

Abstract. A new version of the stream cipher Grain-128 is proposed.
The new version, Grain-128a, is strengthened against all known attacks
and observations on the original Grain-128, and has built-in support for
authentication. The changes are modest, keeping the basic structure of
Grain-128. This gives a high confidence in Grain-128a and allows for easy
updating of existing implementations.

Keywords: Grain-128a, Stream Cipher, Cryptographic Primitive, Hard-
ware Attractive, Lightweight, Message Authentication, MAC

1 Introduction

Many stream ciphers have been proposed over the years, and new designs are
published as cryptanalysis enhances our understanding of how to design safer and
more efficient primitives. While the NESSIE project failed to name a “winner”
after evaluating several new designs around ten years ago, the eSTREAM project
finally decided on two portfolios of promising candidates. One of these aimed at
hardware attractive constructions, and consists of Grain [1], Trivium [2], and
MICKEY [3].

Grain was designed by Hell, Johansson, and Meier and is notable for its
extremely small hardware representation. During the initial phase of the eS-
TREAM project, the original version, Grain v0, was strengthened. The final
version is known as Grain v1.

Like the other portfolio ciphers, Grain v1 is modern in the sense that it allows
for public IVs, yet they only use 80-bit keys. Recognizing the emerging need
for 128-bit keys, Hell, Johansson, Maximov, and Meier proposed Grain-128 [4]
supporting 128-bit keys and 96-bit IVs. The design is akin to that of 80-bit
Grain, but noticeably, the nonlinear parts of the cipher have smaller degrees
than their counterparts in Grain v1.

We specify a new version of Grain-128, namely Grain-128a. The new stream
cipher has native support for authentication, and is expected to be comparable
to the old version in hardware performance.

The authentication supports variable tag-sizes w up to 32 bits, and varying
w does not affect the keystream generated by Grain-128a.

Grain-128a uses slightly different non-linear functions in order to strengthen
it against the known attacks and observations on Grain-128. Existing imple-
mentations of Grain-128 can be reused to a very large extent as the changes,
summarized in Section 6, are modest. This also allows us to have a high confi-
dence in Grain-128a, as the cryptanalysis carries over from Grain-128.

The details of the design are specified in Section 2. The throughput is dis-
cussed in Section 3, and a security analysis is performed in Section 4. The design
choices are motivated theoretically in Section 5, and Section 6 details the differ-
ences to Grain-128. The hardware performance is discussed in Section 7, while
Section 8 concludes the paper. The appendix contains several test vectors.

2 Design Details

Grain-128a consists of a mechanism that produces a pre-output stream, and a
secondary, optional, mechanism that handles the authentication. Fig. 1 depicts
an overview of the building blocks of the pre-output generator, while the authen-
tication mechanism is sketched in Fig. 3. The pre-output generator in turn is
constructed out of three main building blocks, namely an LFSR, an NFSR and a
pre-output function. We denote by si, si+1, . . . , si+127 the contents of the LFSR.
Similarly, the content of the NFSR is denoted by bi, bi+1, . . . , bi+127. Together,
the 256 memory elements in the two shift registers represent the state of the
pre-output generator.

The primitive feedback polynomial of the LFSR, denoted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

To remove any possible ambiguity we also give the corresponding update function
of the LFSR as

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The nonlinear feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60

+ x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40.

To once more remove any possible ambiguity we also give the rule for updating
the NFSR.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+ bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+ bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+ bi+68bi+84 + bi+88bi+92bi+93bi+95

+ bi+22bi+24bi+25 + bi+70bi+78bi+82.

NFSR LFSR

g

24 5 6

f

2 7
h

7

Fig. 1. An overview of the pre-output generator.

Note that the update rule contains the bit si which is output from the LFSR and
masks the input to the NFSR, while it was left out in the feedback polynomial.

Nine state variables are taken as input to a Boolean function, h(x): two bits
come from the NFSR and seven from the LFSR. This function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+94. The pre-output
function is defined as

yi = h(x) + si+93 +
∑
j∈A

bi+j ,

where A = {2, 15, 36, 45, 64, 73, 89}. The output function is defined as

zi = y64+2i,

meaning that we pick every second bit as output of the cipher after skipping
the first 64 bits. Those 64 initial bits and the other half will (may) be used for
authentication, see Section 2.2.

2.1 Key and IV Initialization

Before keystream is generated the cipher must be initialized with the key and the
IV. Denote the bits of the key as ki, 0 ≤ i ≤ 127 and the IV bits IVi, 0 ≤ i ≤ 95.
Initialization of the key and IV is done as follows. The 128 NFSR elements are
loaded with the key bits, bi = ki, 0 ≤ i ≤ 127, and the first 96 LFSR elements
are loaded with the IV bits, si = IVi, 0 ≤ i ≤ 95. The last 32 bits of the LFSR
are filled with ones and a zero, si = 1, 96 ≤ i ≤ 126, s127 = 0. Then, the cipher
is clocked 256 times without producing any keystream. Instead the pre-output
function is fed back and xored with the input, both to the LFSR and to the
NFSR, see Fig. 2.

NFSR LFSR

g f

h

Fig. 2. The key initialization.

Accumulator

Shift register

. . .
mi

y64+2i+1

Fig. 3. An overview of the authentication as it is clocking in message and pre-output
bits.

2.2 Authentication

Assume that we have a message of length L defined by the bits m0, . . . ,mL−1.
Set mL = 1. Note that mL = 1 is the padding, which is crucial for the security
of the authentication as it ensures that m and m||0 have different tags.

In order to provide authentication, two registers of size 32 are used. They are
called the accumulator and the shift register. The content of the accumulator at
time i is denoted by a0

i , . . . , a
31
i . The content of the shift register is denoted by

ri, . . . , ri+31. The accumulator is initialized through ri = yi, 0 ≤ i ≤ 31, and the
shift register is initialized through aj0 = y32+j , 0 ≤ j ≤ 31. The shift register is
updated as ri+32 = y64+2i+1. The accumulator is updated as aji+1 = aji +miri+j
for 0 ≤ j ≤ 31 and 0 ≤ i ≤ L.

The final content of the accumulator, a0
L+1, . . . , a

31
L+1, is denoted the tag and

can be used for authentication. We write ti = aiL+1, 0 ≤ i ≤ 31.
See Fig. 3 for a graphical representation of the authentication mechanism.
To guarantee an implementation-independent use of shorter tags, we define

w-bit tags through t
(w)
i = t32−w+i, 0 ≤ i ≤ w − 1. This amounts to using the

right-most part of the tag in Fig. 3.

3 Throughput Rate

Both shift registers are regularly clocked so the cipher will output one bit every
second clock. This regular clocking is an advantage, both in terms of performance

NFSR LFSR

Fig. 4. The cipher when the speed is doubled.

and resistance to side-channel attacks, compared to using irregular clocking or
decimation.

An important feature of the Grain family of stream ciphers is that the speed
can be increased at the expense of more hardware. This requires the small feed-
back functions, f(x) and g(x), and the pre-output function to be implemented
several times. To aid this, the last 31 bits of the shift registers, si, bi, 97 ≤ i ≤ 127
are not used in the respective feedback function or in the input to the pre-output
function. This allows the speed to be easily multiplied by up to 32 if a sufficient
amount of hardware is available.

An overview of the implementation when the speed is doubled can be seen
in Fig. 4. The shift registers also need to be implemented such that each bit is
shifted t steps instead of just one when the speed is increased by a factor t. The
possibilities to increase the speed is limited to powers of two as t needs to divide
e.g., the initialization count, which is 256, and the authentication initialization,
which is another 64 basic clockings. Since the pre-output and feedback functions
are small, it is quite feasible to increase the throughput in this way. By increasing
the speed by a factor 32, the cipher will output 16 bits/clock.

For more discussion about the hardware implementation of Grain-128a, we
refer to Section 7.

4 Security Evaluation

Excellent hardware performance is of little use if the cipher is not secure. We
outline several possible cryptanalytic attacks, and build upon these insights to
decide on the different functions and parameters used in Grain-128a.

In the following, we will consider the pre-output stream yi, as the keystream
zi is just as good from a security point of view (but half the length), and the
authentication will rely on the security of the pre-output stream.

4.1 Linear Approximations

Golić [5] realized that in any stream cipher, one can always find some linear
combination of the output bits that is unbalanced, meaning it is more often e.g.,

0 than 1. In this section, we consider the general Grain design, ignoring specifics
such as the exact choices of f , g, and h. The function f is of course restricted
to being a primitive polynomial, as it is the feedback function of the LFSR.
Updating the NFSR is similarly made through g, and the output is created
through h. To simplify notation, this section denotes by h the entire output
function, i.e., it includes the bits added linearly in the output function.

Maximov studied this general structure in [6] and introduced Ag and Ah as
linear approximations for g and h with biases εg and εh, respectively. That is,

Pr{Ag = g} = 1/2 + εg,

Pr{Ah = h} = 1/2 + εh.

Then, a time invariant linear combination of the keystream bits and LFSR bits
exists, and the bias of this equation is

ε = 2(η(Ah)+η(Ag)−1) · εη(Ah)
g · εη(Ag)

h , (1)

where η(a) is the number of the NFSR state variables used in the function a. The
LFSR taps have not been accounted for, and this bias can not be readily used in
any attack. However, by summing shifted versions of this function, so that the
LFSR contributions add up to zero, a practical attack can be mounted, at least
if the bias ε of the new linear equation is large. Finding a low weight parity check
equation [7–10] for the LFSR improves this ε at the expense of requiring longer
keystream, and the pre-computation of finding such a parity check equation.
Maximov also showed that the strength of Grain against correlation attacks is
based on the difficulty of the general decoding problem (GDP), which is well-
known to be a hard problem. Various time-memory trade-off approaches to the
GDP have been discussed in e.g., [11–15].

As one can always find a biased linear approximation Aa for any function a,
one can never eliminate the biased nature of Grain’s output. It thus comes down
to choosing particular functions g and h such that this bias is extremely small,
so that the resulting attack will be a less promising choice than a simple brute
force.

4.2 Algebraic Attacks

The individual bits in the pre-output stream can be expressed as functions of
the initial state, i.e., the state bits just prior to pre-output generation begins.
Thus, with access to a stream of such bits, an attacker can attempt to solve the
corresponding system of equations. If Grain-128a did not contain the NFSR, i.e.,
it was a basic filter generator, such algebraic attacks could be very successful.
However, Grain-128a does use an NFSR, which introduces much more nonlin-
earity, together with h, see e.g., [16]. Solving equations for the initial 256 bit
state is not possible due to the nonlinear update of the NFSR and the NFSR
state bits used nonlinearly in h [17].

4.3 Time-Memory-Data Trade-off Attack

A generic attack that can be applied to a large class of cryptographic primitives,
and on stream ciphers in particular, is the time-memory-data trade-off attack.
The cost is O(2n/2) where n is the size of the state [18]. As the state in Grain-
128a is of size 256, the expected complexity of such an attack is at least O(2128),
which exceeds that of brute force.

4.4 Fault Attacks

Fault attacks were introduced in [19] and have been efficient against many known
stream cipher constructions. Whether they are practical is not so clear: one
scenario in a fault attack is to allow the adversary to introduce some bit flipping
faults to one of the shift registers. We note that faults in the NFSR should be
harder to trace than faults in the LFSR, and the strongest assumption possible is
therefore that the adversary can introduce a single fault in a location of the LFSR
that he can somehow determine. When the fault propagates to position bi+95,
the difference has spread to the NFSR-related output, and is soon introducing
nonlinearities. Until that point in time, the difference observed in the output is
coming only from inputs of h from the LFSR. Allowing the adversary to reset
Grain-128a many times, each time introducing a new fault, might enable him
to acquire information about some subset of LFSR bits. Slightly more realistic
assumptions on the ability to introduce a known number of faults makes it more
difficult to deduce LFSR bits from the differences in output.

4.5 Side-Channel Attacks

Any attacker that can observe some signal that is emitted from the implemen-
tation of a cryptographic primitive — most often power consumption or some
function thereof — and that is dependent on the inner calculations, may be able
to deduce the numbers, bits, etc. used in these calculations and thus, e.g., the
key or the message.

We note that the authentication mechanism performs work on two vastly
different levels of power consumption. Viewing a power diagram of a naive im-
plementation that processes one message bit every clocking, it should be easy to
tell apart ones from zeros.

Just as with any other cryptographic primitive, care must be taken to protect
an actual implementation of Grain-128a against side-channel attacks [20].

4.6 Weak Key-IV pairs

Zhang and Wang [21] have shown that there are 296 weak key-IV pairs in Grain-
128, each leading to an all-zero LFSR after the initialization phase. They have
also demonstrated how to distinguish such keystream, and how to recover the
initial state.

We note that the IV is normally assumed to be public, and that the proba-
bility of using a weak key-IV pair is 2−128. Any attacker guessing this to happen
and then launching a rather expensive attack, is much better off just guessing a
key.

4.7 The Authentication

It has been shown that an attacker who replaces a message-tag pair (m, t)
with a modified version (m + a, t + b) has a success probability bounded by
2−32 + 2ε, where ε measures the randomness in the keystream sequence used
for authentication. Details are available in [22, 23]. From (1) in Section 4.1 and
specific values of εg, εh given later, we know that ε � 2−32 in our case. We can
therefore claim that the success probability of this substitution attack is bounded
by approximately 2−32, and that the best attack is to basically guess the tag for
any message. The attack probability is similarly bounded by approximately 2−w

for w-bit tags.
From the work in [22,24], it is also clear that avoiding reuse of the key-IV pair

is crucial to the security of the authentication, just as it is for the encryption.
An attacker who is able to tweak a message-tag pair and have it accepted (this
happens with probability 2−w) will be able to perform subsequent forgeries with
probability 1 if the key-IV pair is reused.

The authentication mechanism is very similar to that in the 3GPP algorithm
128-EIA3 [25], which uses the stream cipher ZUC [26]. However, in 128-EIA3 two
entirely different instances of ZUC are used. The IVs are similar or even equal,
but two different keys are utilized: one for encryption and one for authentication.
As encryption and authentication are performed simultaneously, one needs to
utilize two implementations of ZUC or an expensive buffering. We consider our
approach superior from a hardware point of view as the authentication and
encryption share the pre-output stream of a single instance of Grain-128a.

Note also that a draft version of 128-EIA3 was broken by Fuhr et al. [27]. This
attack does not apply to Grain-128a as it uses the technique mentioned in [22,27]
to avoid the exploited problem. Thus, Grain-128a extracts the “one time pad”,
used to finalize the MAC, from the beginning of the pre-output stream.

[27] also wonders whether the IV is any problem — it is not; if the constant
key, variable IV used with the authentication mechanism in Grain-128a was a
problem, there would exist a strong distinguisher on the pre-output stream (and
very likely the keystream) when Grain-128a is used in the most natural of modes
for stream ciphers: constant key, variable IV.

5 Design Choices

From the above, it is apparent that it is crucial to select design parameters with
great care. This section gives the details regarding the choices for the parameters
and functions used in Grain-128a.

5.1 Size of the LFSR and the NFSR

The size of the key in Grain-128a is 128 bits. Considering the simple and generic
time-memory-data trade-off attack, the size of the internal state must be at least
twice that of the key. Thus, we decide on an internal state consisting of 256 bits.
Dividing these equally between the NFSR and the LFSR is an apparent choice.

5.2 Speed Acceleration

As outlined previously, Grain-128a can be made significantly faster by imple-
menting the functions f , g, and h several times. For a simple implementation of
this speed acceleration up to a factor 32, these functions should be chosen not
to use variables taken from the 31 right-most taps of the registers, as seen in
Fig. 1.

5.3 Choice of f

As f should be the generating polynomial for the LFSR, and we want the period
to be maximal, we need f to be primitive. It is well-known that polynomials of
low weight can be exploited in various correlation attacks [28]. This implies that
we should use many taps of the LFSR, but on the other hand, it is undesirable
to use a very large number of taps, due to the hardware cost.

5.4 Choice of g

The purpose of this function is to create nonlinear relations between state bits,
and we need to avoid the attack described in Section 4.1. The best linear ap-
proximation of g is of considerable interest, and for it to contain many terms, we
need the resiliency of the function g to be high. We also need a high nonlinearity
in order to obtain a small bias. To construct g, we thus use two functions — one
with high nonlinearity and a linear one with high resiliency. The function

b(x) = x0x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11

+ x12x13 + x14x15x16 + x17x18x19 + x20x21x22x23,

collecting the nonlinear terms, has nonlinearity 8356352. In order to strengthen
the resiliency, 5 linear terms are added to the function. As a result, g is balanced,
has nonlinearity 25 ·8356352 = 267403264 and resiliency 4. The set of best linear
approximations is the set of linear functions where at least all the linear terms
of g are present. This set is of size 214 and all the functions in it have bias
εg = 63 · 2−15 < 2−9.

5.5 Choice of pre-output function

In order to make it certain that both registers affect the pre-output in each
time step, terms from both registers are added linearly to the function h, which

also uses bits from both registers. The nonlinearity of h is 240 and adding 8
variables linearly yields a total nonlinearity of 28 · 240 = 61440. The best linear
approximation has bias εh = 2−5, and there are in total 28 linear approximations
of h with that bias.

5.6 Choice of authentication mechanism

[22] has made a thorough comparison of several approaches to authentication.
It is clear that there is a choice to make between 1) register count, 2) security
(substitution attack success probability), and 3) need of randomness (using a
lot of keystream vs processing an initial seed). Since Grain-128a aims to be
cost-efficient in hardware and yet very secure, the third parameter, keystream
consumption during authentication, has been allowed to become high. Indeed,
more pre-output bits are used for authentication than for encryption. There is,
however, a very natural explanation for this under the assumption that whoever
is about to implement the authentication mechanism in Grain-128a has already
implemented its encryption mechanism. As mentioned in Section 3, it is quite
cheap to double the rate of Grain-128a. Thus, the “cost” of upgrading from a
hypothetical Grain-128a without any authentication to also using authentication
amounts to the authentication mechanism itself and some additional gates in
order to double the rate. Note that we could have created two keystreams from
the NFSR and LFSR — one for encryption and one for authentication. This
would in a sense allow us to double the throughput, but could have disastrous
drawbacks if we are not very careful, and we have decided to stick with the much
safer approach.

5.7 Choice of support for variable tag lengths

We suggest 32 bits as an upper tag size, as any application using Grain-128a
is supposedly operating under some resource constraints and using e.g., 64 bits
seems superfluous. Also, support for 64 bit tags would mean more clockings be-
fore keystream generation begins, even in the absence of authentication, since the
correct number of pre-output bits need to be calculated and discarded. Note that
a different approach could have been taken to allowing variable tag sizes: First
initialize the cipher, then, perhaps, initialize the authentication using the desir-
able tag size, then produce keystream and, perhaps, authenticate. This could be
done without discarding any pre-output bits. Using a certain key and IV, differ-
ent tag sizes would naturally lead to different keystreams, but more worryingly,
there would appear a possibility of using different pre-output bits for different
purposes in different settings. Consider a known plaintext on a version without
authentication. This would give the attacker the entire pre-output stream. If the
receiver could be tricked into using 32 bit tags, the attacker could not only spoof
an encryption (which is of course trivial with known keystream), but also the
corresponding authenticating tag, thus elevating the supposed security of the
scheme while still breaking it. (An attacker able to shorten the tags is of course
very powerful, but that increasing the tag-size could be a security problem is

not at all obvious.) Considering this, we have decided to pre-determine which
pre-output bits are used for what purpose. This does mean that applications
with no or smaller tags will see a small overhead, but the overall confidence in
the algorithm will be greater.

5.8 Choice of authentication initialization

We load the accumulator with the first 32 pre-output bits, and the register with
the next 32. An alternative would have been to alternately load one bit into each
register, i.e., ri = y2i, ai0 = y2i+1 for 0 ≤ i ≤ 31. This would have meant that no
matter w, a chunk of pre-output bits would have been discarded, and another
chunk (the “end” before keystream generation begins) used to initialize the au-
thentication mechanism. This could be interpreted as a prolonged initialization
of Grain-128a. Our specification instead uses two separate chunks to load the
accumulator and the register, respectively. With 0 < w < 32, this means that the
discarded pre-output bits are found in two separate blocks. We note, however,
that this allows the accumulator to be loaded through the accumulating mecha-
nism: one can load the first chunk of pre-output bits into the register and then
“accumulate” it onto a zeroed accumulator. Later, the register is loaded with
the bits that it should contain when Grain-128a is ready to produce keystream
and authenticate message bits. Cryptanalytically, we note that the alternative
approach would have allowed an attacker to access the xor of the two supposedly
“weakest” pre-output bits: r0 +a0

0 = y0 +y1. Instead, the attacker can only learn
these bits masked with bits that are produced later, being even more initialized:
r0 + a0

0 = y0 + y32. This is not to imply that we do not trust the pre-output
bits to be properly initialized — we only note that some bits are even more
initialized, and it seems favourable to mix less and more initialized ones.

6 Differences From Grain-128

A number of changes have been made compared to Grain-128. In this section,
we list and motivate each of these differences.

6.1 The Function g(x)

We have added three monomials: two of degree three and one of degree four.
This is in response to the papers by Aumasson et al. [29] and Stankovski [30].
Both papers try to find sets of IV bits, where the remaining key and IV bits
are fixed. E.g., with a set of 40 IV bits, one requests the first bit of the 240

keystreams corresponding to the 240 initial values. The first bit in the keystream
is a function of the key and IV bits, and by processing these 240 “first bits”, one
might be able to find some information on the secret key, at least if the function
describing this bit is not complicated enough. It is natural to study instead the
bits that are discarded during the initialization, as it is supposedly easier to find

any information in them, and it should be possible to get an idea of whether the
initialization is strong enough. More details are available in the papers.

Stankovski defines a nonrandomness threshold and claims that there is non-
randomness throughout the full 256 rounds of initialization of Grain-128. This
implies that the key and IV material is not properly mixed before keystream
generation starts, and highlights that the initialization used too few clockings
and/or too little nonlinearity.

As a consequence of adding authentication, the number of clockings before
the encryption keystream is created grows from 256 to 320. The cryptographic
properties needed for the authenticating bitstream, on the other hand, are not at
all as strong as those that we demand from a stream cipher. (If the authentication
mechanism would allow leakage of the pre-output bits y0, y1, . . . , y63, it would
still be possible to access this slightly less initialized keystream. However, as an
effect of the message padding, an attacker can only get hold of the xor of two
(or more) windows of authenticating keystream material.)

We tried Stankovski’s algorithm on variants of Grain-128a, analyzing the
initialization, where we used several different candidate polynomials gi(x). We
finally settled on one that had very good behaviour, both in terms of passing
the nonrandomness tests of [30], and in terms of hardware implementation. The
results are shown in Fig. 5. While this does not prove that Grain-128a mixes key
and IV variables enough, it shows that the new design is less susceptible to this
problem.

bitset size

number of rounds

5 10 15 20 25 30 35 40

50

100

150

200

256

Fig. 5. The upper curve is Stankovski’s result on Grain-128, where he starts from the
optimal bitset of size 6, using only IV bits, and continuously add two bits according
to his greedy algorithm in order to find good bitsets (cubes) where many initializa-
tion “output” bits xor to zero. The exact number of such bits is used to define the
“nonrandomness.” Finally he reaches a bitset of size 40 such that all initialization out-
put bits xor to zero. The same strategy does not work as well on the initialization of
Grain-128a. The curve starts lower and does not rise. We have launched an even more
computationally demanding strategy of adding three bits rather than two in each step,
but the curve resulting from that experiment shows the same non-growing tendency
and has been excluded to avoid cluttering the figure.

6.2 IV Initialization

Setting s127 = 0 during IV initialization is a direct response to the observation
in [31], where it was pointed out that using only ones to fill the IV register,
there was a high probability that two very similar key-IV pairs would produce
keystreams that were shifted variants of each other. As a direct consequence of
this change, the previously known attacks [31–33] on Grain-128 are no longer
applicable.

6.3 Authentication

We add authentication to Grain-128a.

6.4 Throughput Rate

The throughput rate is lower than in Grain-128, but it is quite easy to double
it in response.

6.5 A Tap in the Pre-Output Function h(x)

Dinur and Shamir recently used techniques similar in spirit to Stankovski’s in
what they dub a dynamic cube attack [34]. For a fraction 2−10 of all keys,
they are able to break the full key of Grain-128 by requesting, and storing,
keystreams corresponding to 259 chosen IVs. By nulling state bits, they are able
to significantly simplify the equations that need to be solved in order to find the
key bits.

This is partly due to the low degree of g, and partly to the choice of x4 = bi+95

and x8 = si+95 in the pre-output function of Grain-128: these bits are multiplied
together, but are very similar during the initialization phase when the suppressed
pre-output bit is fed back to the registers. To mitigate this weakness, Grain-128a
uses x4 = bi+95 and x8 = si+94 in the pre-output function of Grain-128a.

Also note that Dinur and Shamir need access to the first bit generated after
256 initialization rounds. In Grain-128a, they will only be able to access the
xor of this bit and at least one other, even more “initialized”, pre-output bit. If
they instead choose to use the first output bit of Grain-128a, it will have been
produced after 320 rounds as opposed to 256.

7 Hardware Complexity

Grain-128a can be constructed using flip flops, xors, etc. and the gate counts
required for these fundamental elements can be given as estimates at best. The
exact cost of any implementation will depend on many parameters, such as the
exact type of hardware used, the latest-and-greatest optimisations and tricks,
and so on. Nonetheless, an estimate using some established measurements is
highly useful in quickly assessing the feasibility of an algorithm.

Table 1. The gate count used for different functions.

Function Gate Count

NAND2 1

NAND3 1.5

NAND4 2

XOR2 2.5

Flip flop 8

Table 2. The estimated gate count in an actual implementation. The total given
for the w-bit MAC only relates to the authentication mechanism itself, not the pre-
output generator needed to actually run it. The cost of the “accumulating logic” of
the authentication mechanism is the same for speeds 1x and 2x — one implementation
makes use of this logic every second clocking, and the other on each one.

Gate Count Speed Increase

Building Block 1x 2x 4x 8x 16x 32x

LFSR 1024 1024 1024 1024 1024 1024

NFSR 1024 1024 1024 1024 1024 1024

f 12.5 25 50 100 200 400

g 49.5 99 198 396 792 1584

Pre-output function 35.5 71 142 284 568 1136

Accumulator 8w 8w 8w 8w 8w 8w

Register 8w 8w 8w 8w 8w 8w

Accumulating logic 3.5w 3.5w 7w 14w 28w 56w

Total (only enc.) 2145.5 2243 2438 2828 3608 5168

Total (only w-bit MAC) 19.5w 19.5w 23w 30w 44w 72w

Total (enc. + 32-bit MAC) 2769.5 2867 3174 3788 5016 7472

We use fundamental gate counts similar to those found in e.g., [4] where the
nand gate with two inputs is defined to have unit gate count, and the other
basic building elements are measured in equivalent nand gates. The list of the
equivalent gate counts that have been used in deriving hardware numbers in this
paper is found in Table 1.

Table 2 gives the gate counts for the larger building blocks of Grain-128a, as
well as the total gate count for the entire Grain-128a. Basic combinatorics, e.g.,
the multiplexers needed to select between e.g., initialization of the pre-output
generator, initialization of the authentication, and keystream generation, have
not been included. The few extra xors needed during initialization have also been
left out. As the gate counts are already estimates, these small numbers are not
important.

7.1 Different Tag Sizes

It is possible to make the authentication mechanism consume less hardware
resources, at the cost of increasing the success probability of the attack. The
intuitive approach to producing a shorter tag is to simply chop the original one,
discarding some bits. As Grain-128a aims for large flexibility and efficiency, the
construction allows to not calculate these bits in the first place.

Note that care must be taken to discard the correct pre-output bits as to not
affect the calculations of the remaining part of the authentication tag as well as
the encryption keystream.

7.2 The Increase From Grain-128

Let us compare the hardware cost of an implementation without authentication,
producing one bit per clock to that of Grain-128. This was the smallest possible
Grain-128, and the increase in this cost should give us an idea of the cost of the
extra flexibility and security added in Grain-128a.

Grain-128 required 2133 gate equivalents to implement the basic design, pro-
ducing one bit of keystream per clocking. Compare this with the new design,
looking at the version that produces one bit of keystream (two bits of pre-
output) per clocking. According to Table 2, the number of gate equivalents is
2243. This is a mere five per cent increase. Note that while Grain-128 initial-
ized in 256 clockings, Grain-128a (in 2x mode), generates keystream after only
(256 + 64)/2 = 160 clockings.

8 Conclusion

A new stream cipher, Grain-128a, has been presented. The design is a new
member in the family of Grain stream ciphers. The size of the key is 128 bits
and the size of the IV is 96 bits. The design parameters have been chosen based
on theoretical arguments for various possible attacks, and in light of known
observations on older members of the family. With a low gate count, a low power
consumption and a small chip area, Grain-128a is very well suited for hardware
environments. The speed of the cipher can be increased very easily at the expense
of extra hardware. Grain-128a is slightly more expensive in hardware than Grain-
128, but offers better security and the possibility of adding authentication. To
our knowledge, there is no 128 bit cipher offering the same security as Grain-128a
and a smaller gate count in hardware.

Acknowledgment

The first author is supported by the Swedish Foundation for Strategic Research
(SSF) through its Strategic Center for High Speed Wireless Communication at
Lund.

The fourth author is supported in part by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS),
a center of the Swiss National Science Foundation under the grant number 5005-
67322.

References

1. M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained
environments.” International Journal of Wireless and Mobile Computing, Special
Issue on Security of Computer Network and Mobile Systems., vol. 2, no. 1, pp.
86–93, 2006.

2. C. De Cannière and B. Preneel, “Trivium,” in New Stream Cipher Designs, ser.
Lecture Notes in Computer Science, M. Robshaw and O. Billet, Eds., vol. 4986.
Springer-Verlag, 2008, pp. 244–266.

3. S. Babbage and M. Dodd, “The MICKEY Stream Ciphers,” in New Stream Cipher
Designs, ser. Lecture Notes in Computer Science, M. Robshaw and O. Billet, Eds.,
vol. 4986. Springer-Verlag, 2008, pp. 191–209.

4. M. Hell, T. Johansson, A. Maximov, and W. Meier, “A Stream Cipher Pro-
posal: Grain-128,” in International Symposium on Information Theory—ISIT
2006. IEEE, 2006.

5. J. D. Golić, “Intrinsic statistical weakness of keystream generators,” in Advances
in Cryptology—ASIACRYPT’94, 1994, pp. 91–103.

6. A. Maximov, “Cryptanalysis of the “Grain” family of stream ciphers,” in
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS’06), 2006, pp. 283–288.

7. W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream ciphers,”
Journal of Cryptology, vol. 1, no. 3, pp. 159–176, 1989.

8. W. Penzhorn and G. Kühn, “Computation of low-weight parity checks for correla-
tion attacks on stream ciphers,” in Cryptography and Coding - 5th IMA Conference,
ser. Lecture Notes in Computer Science, C. Boyd, Ed., vol. 1025. Springer-Verlag,
1995, pp. 74–83.

9. J. D. Golić, “Computation of low-weight parity-check polynomials,” Electronic
Letters, vol. 32, no. 21, pp. 1981–1982, October 1996.

10. D. Wagner, “A generalized birthday problem,” in Advances in Cryptology—
CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung, Ed., vol. 2442.
Springer-Verlag, 2002, pp. 288–303.

11. T. Johansson and F. Jönsson, “Fast correlation attacks based on turbo code tech-
niques,” in Advances in Cryptology—CRYPTO’99, ser. Lecture Notes in Computer
Science, M. Wiener, Ed., vol. 1666. Springer-Verlag, 1999, pp. 181–197.

12. ——, “Fast correlation attacks through reconstruction of linear polynomials,” in
Advances in Cryptology—CRYPTO 2000, ser. Lecture Notes in Computer Science,
M. Bellare, Ed., vol. 1880. Springer-Verlag, 2000, pp. 300–315.

13. V. Chepyzhov, T. Johansson, and B. Smeets, “A simple algorithm for fast corre-
lation attacks on stream ciphers,” in Fast Software Encryption 2000, ser. Lecture
Notes in Computer Science, B. Schneier, Ed., vol. 1978. Springer-Verlag, 2000,
pp. 181–195.

14. M. J. Mihaljević, M. Fossorier, and H. Imai, “Fast correlation attack algorithm
with list decoding and an application,” Lecture Notes in Computer Science, vol.
2355, pp. 196–210, 2002.

15. P. Chose, A. Joux, and M. Mitton, “Fast correlation attacks: An algorithmic point
of view,” Lecture Notes in Computer Science, vol. 2332, pp. 209–221, 2002.

16. N. Courtois and W. Meier, “Algebraic attacks on stream ciphers with linear feed-
back,” in Advances in Cryptology—EUROCRYPT 2003, ser. Lecture Notes in Com-
puter Science, E. Biham, Ed., vol. 2656. Springer-Verlag, 2003, pp. 345–359.

17. C. Berbain, H. Gilbert, and A. Joux, “Algebraic and correlation attacks
against linearly filtered non linear feedback shift registers,” in Selected Areas in
Cryptography—SAC 2008, ser. Lecture Notes in Computer Science, R. Avanzi,
L. Keliher, and F. Sica, Eds., vol. 5381. Springer-Verlag, 2008, pp. 184–198.

18. A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs for
stream ciphers,” in Advances in Cryptology—ASIACRYPT 2000, ser. Lecture
Notes in Computer Science, T. Okamoto, Ed., vol. 1976. Springer-Verlag, 2000,
pp. 1–13.

19. J. Hoch and A. Shamir, “Fault analysis of stream ciphers.” in CHES 2004, ser.
Lecture Notes in Computer Science, vol. 3156. Springer-Verlag, 2004, pp. 240–
253.

20. W. Fischer, B. M. Gammel, O. Kniffler, and J. Velten, “Differential power analysis
of stream ciphers,” 2007, the State of the Art of Stream Ciphers, Workshop Record,
SASC 2007, Bochum, Germany.

21. H. Zhang and X. Wang, “Cryptanalysis of stream cipher Grain family,” Cryptology
ePrint Archive, Report 2009/109, 2009, http://eprint.iacr.org/.

22. M. Ågren, M. Hell, and T. Johansson, “On hardware-oriented message authenti-
cation with applications towards RFID,” in Proceedings of the 2011 Workshop on
Lightweight Security & Privacy: Devices, Protocols, and Applications (to appear),
E. Savas, A. A. Selçuk, and U. Uludag, Eds., 2011.

23. H. Krawczyk, “New hash functions for message authentication,” in Advances in
Cryptology—EUROCRYPT’95. Springer-Verlag, 1995, pp. 301–310.

24. H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash function
based MAC algorithms,” in Advances in Cryptology—CRYPTO 2008, ser. Lecture
Notes in Computer Science, D. Wagner, Ed., vol. 5157. Springer-Verlag, 2008,
pp. 144–161.

25. 3GPP, “Specification of the 3GPP confidentiality and integrity al-
gorithms 128-EEA3 & 128-EIA3. Document 1: 128-EEA3 and 128-
EIA3 specification,” 3rd Generation Partnership Project (3GPP), TS,
Jul. 2010. [Online]. Available: http://gsmworld.com/our-work/programmes-
and-initiatives/fraud-and-security/gsm security algorithms.htm

26. ——, “Specification of the 3GPP confidentiality and integrity al-
gorithms 128-EEA3 & 128-EIA3. Document 2: ZUC specifica-
tion,” 3rd Generation Partnership Project (3GPP), TS, Jul.
2010. [Online]. Available: http://gsmworld.com/our-work/programmes-and-
initiatives/fraud-and-security/gsm security algorithms.htm

27. T. Fuhr, H. Gilbert, J.-R. Reinhard, and M. Videau, “A forgery attack on the can-
didate LTE integrity algorithm 128-EIA3 (updated version),” Cryptology ePrint
Archive, Report 2010/618, 2010, http://eprint.iacr.org/.

28. A. Canteaut and M. Trabbia, “Improved fast correlation attacks using parity-check
equations of weight 4 and 5,” in Advances in Cryptology—EUROCRYPT 2000, ser.
Lecture Notes in Computer Science, B. Preneel, Ed., vol. 1807. Springer-Verlag,
2000, pp. 573–588.

29. J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir, “Efficient FPGA
implementations of high-dimensional cube testers on the stream cipher Grain-128,”

in Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’09), 2009.

30. P. Stankovski, “Greedy distinguishers and nonrandomness detectors,” in Progress
in Cryptology—INDOCRYPT 2010, ser. Lecture Notes in Computer Science,
G. Gong and K. C. Gupta, Eds., vol. 6498. Springer-Verlag, 2010, pp. 210–226.

31. Ö. Küçük, “Slide resynchronization attack on the initialization of Grain
1.0,” eSTREAM, ECRYPT Stream Cipher Project, Report 2006/044, 2006,
http://www.ecrypt.eu.org/stream.

32. C. De Cannière, Ö. Küçük, and B. Preneel, “Analysis of Grain’s initialization
algorithm,” in Progress in Cryptology—AFRICACRYPT 2008, ser. Lecture Notes
in Computer Science, S. Vaudenay, Ed., vol. 5023. Springer-Verlag, 2008, pp.
276–289.

33. Y. Lee, K. Jeong, J. Sung, and S. Hong, “Related-key chosen IV attacks on Grain-
v1 and Grain-128,” in 13th Australasian Conference on Information Security and
Privacy, ACISP 2008, ser. Lecture Notes in Computer Science, Y. Mu, W. Susilo,
and J. Seberry, Eds., vol. 5107. Springer-Verlag, 2008, pp. 321–335.

34. I. Dinur and A. Shamir, “Breaking Grain-128 with dynamic cube attacks,” in Fast
Software Encryption 2011, ser. To be published in Lecture Notes in Computer
Science, A. Joux, Ed. Springer-Verlag, 2011.

Table 3. Test vectors for Grain-128a.

key 0000000000000000 0123456789abcdef

0000000000000000 123456789abcdef0

iv 0000000000000000 0123456789abcdef

00000000 12345678

pre-output c0207f221660650b f88720c13f46e6a4

stream 6a952ae26586136f 3c07eeed89161a4d

a0904140c8621cfe d73bd6b8be8b6b11

8660c0dec0969e94 6879714ebb630e0a

36f4ace92cf1ebb7 4c12f0399412982c

accumulator c0207f22 f88720c1

register 1660650b 3f46e6a4

keystream 787d4917c800a52f 61fea132979efb70

948b89b85cee6cfd 6643f53321c681a6

macstream 8708b25b0498886e 63ab164bf5e46195

288e86666e292d97 8dda5920a4c56442

tag(m0) d6401a29 c7c1c655

tag(m1) ece0b535 860aed89

tag(m2) fa80d03e b94c0b2d

tag(m3) 359f67d1 4934b8ad

tag(m4) 4c8dcab1 3c3c9320

A Test Vectors

Reflecting the bit-wise nature of Grain-128a, the first bit emitted as keystream
is the most significant one.

Among the test vectors are the authentications of five different messages.
Message 0, m0, is the message of length 0. Messages 1 and 2 are both of length
1: m1 = m2 + 1 = 0. These three messages are supposedly helpful in verifying
the initialization and basic functioning of the MAC algorithm.

Message 3 is of length 20 and its hexadecimal representation is m3 = 12340.
Message 4 is 41 bits long and can, using slightly abused notation, be represented
as m4 = 123456789e8. To avoid any confusion we also give the bit representation
of m4: 00010010001101000101011001111000100111101.

The test vectors named “macstream” are the sequences shifted into the reg-
ister, i.e., the pre-output bits y65, y67,

For the purpose of testing shorter tags, we give the 16-bit tag for m4 au-
thenticated using the all-zero key and all-zero IV as cab1.

